1,805 research outputs found

    A numerical circulation model with topography for the Martian Southern Hemisphere

    Get PDF
    A quasi-geostrophic numerical model, including friction, radiation, and the observed planetary topography, is applied to the general circulation of the Martian atmosphere in the Southern Hemisphere at latitudes south of about 35 deg. Near equilibrium weather systems developed after about 5 model days. To avoid violating the quasi-geostrophic approximation, only 0.8 of the already smoothed relief was employed. Weather systems and velocity fields are strikingly tied to topography. A 2mb middle latitude jet stream is found of remarkably terrestrial aspect. Highest surface velocities, both horizontal and vertical, are predicted in western Hellas Planitia and eastern Argyre Planitia, which are observed to be preferred sites of origin of major Martian dust storms. Mean horizontal velocities and vertical velocities are found just above the surface velocity boundary layer

    Play and Play Materials.

    Get PDF
    4 p

    Sensitivity of desert dust emissions to model horizontal grid spacing during the Bodélé Dust Experiment 2005

    Get PDF
    The impact of model horizontal grid spacing on meteorology and dust emissions in the Bodélé depression was investigated during the well-documented period of the Bodélé Dust Experiment 2005 (BoDEx 2005). Five horizontal grid spacing ranging from 100 km to 5 km were tested. The main conclusion of these sensitivity tests is that the meteorology of the Bodélé depression is quite insensitive to model horizontal grid spacing below 50 km in agreement with Todd et al.'s (2008b) results. Below 50 km, dust emissions also appear relatively insensitive to model mesh size, the influence of model horizontal grid spacing on dust emissions tending towards an asymptotic behavior as model mesh size is reduced

    Modelling growth and form of the scleractinian coral Pocillopora verrucosa and the influence of hydrodynamics

    Get PDF
    The growth of scleractinian corals is strongly influenced by the effect of water motion. Corals are known to have a high level of phenotypic variation and exhibit a diverse range of growth forms, which often contain a high level of geometric complexity. Due to their complex shape, simulation models represent an important option to complement experimental studies of growth and flow. In this work, we analyzed the impact of flow on coral's morphology by an accretive growth model coupled with advection-diffusion equations. We performed simulations under no-flow and uni-directional flow setup with the Reynolds number constant. The relevant importance of diffusion to advection was investigated by varying the diffusion coefficient, rather than the flow speed in PĂ©clet number. The flow and transport equations were coupled and solved using COMSOL Multiphysics. We then compared the simulated morphologies with a series of Computed Tomography (CT) scans of scleractinian corals Pocillopora verrucosa exposed to various flow conditions in the in situ controlled flume setup. As a result, we found a similar trend associated with the increasing PĂ©clet for both simulated forms and in situ corals; that is uni-directional current tends to facilitate asymmetrical growth response resulting in colonies with branches predominantly developed in the upstream direction. A closer look at the morphological traits yielded an interesting property about colony symmetry and plasticity induced by uni-directional flow. Both simulated and in situ corals exhibit a tendency where the degree of symmetry decreases and compactification increases in conjunction with the augmented PĂ©clet thus indicates the significant importance of hydrodynamics

    Ultraviolet Complete Quantum Gravity

    Full text link
    An ultraviolet complete quantum gravity theory is formulated in which vertex functions in Feynman graphs are entire functions and the propagating graviton is described by a local, causal propagator. The cosmological constant problem is investigated in the context of the ultraviolet complete quantum gravity.Comment: 11 pages, no figures. Changes to text. Results remain the same. References added. To be published in European Physics Journal Plu

    multiple methodologies and time-dependent intervention*

    Get PDF
    Environmental and genetic influences on neurocognitive development: the importance o

    Understanding patient options, utilization patterns, and burdens associated with breast cancer screening.

    Get PDF
    Abstract Despite ongoing awareness, educational campaigns, and advances in technology, breast cancer screening remains a complex topic for women and for the health care system. Lack of consensus among organizations developing screening guidelines has caused confusion for patients and providers. The psychosocial factors related to breast cancer screening are not well understood. The prevailing algorithm for screening results in significant rates of patient recall for further diagnostic imaging or procedures, the majority of which rule out breast cancer rather than confirming it. For women, the consequences of the status quo range from unnecessary stress to additional out-of-pocket expenses to indirect costs that are more difficult to quantify. A more thoughtful approach to breast cancer screening, coupled with a research agenda that recognizes the indirect and intangible costs that women bear, is needed to improve cost and quality outcomes in this area

    Non-equilibrium stationary state of a two-temperature spin chain

    Full text link
    A kinetic one-dimensional Ising model is coupled to two heat baths, such that spins at even (odd) lattice sites experience a temperature TeT_{e} (% T_{o}). Spin flips occur with Glauber-type rates generalised to the case of two temperatures. Driven by the temperature differential, the spin chain settles into a non-equilibrium steady state which corresponds to the stationary solution of a master equation. We construct a perturbation expansion of this master equation in terms of the temperature difference and compute explicitly the first two corrections to the equilibrium Boltzmann distribution. The key result is the emergence of additional spin operators in the steady state, increasing in spatial range and order of spin products. We comment on the violation of detailed balance and entropy production in the steady state.Comment: 11 pages, 1 figure, Revte
    • 

    corecore